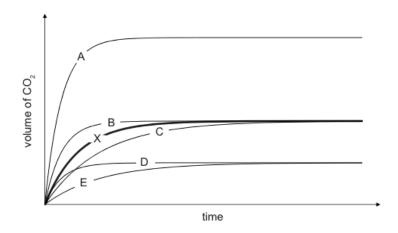


BMAT Chemistry Compilation 2009 - 2016


Rates

22 Calcium carbonate reacts with hydrochloric acid. The reaction gives off carbon dioxide gas.

Line X on the graph shows the volume of carbon dioxide formed against time when $100\,\mathrm{cm^3}$ of $1.0\,\mathrm{mol\,dm^{-3}}$ of hydrochloric acid reacts with calcium carbonate chips at $20\,^\circ\mathrm{C}$. There was an excess of calcium carbonate chips.

$$\text{CaCO}_3 \ + \ 2\text{HCl} \ \rightarrow \ \text{CaCl}_2 \ + \ \text{CO}_2 \ + \ \text{H}_2\text{O(I)}$$

Which line best represents the volume of carbon dioxide formed against time when the reaction is repeated with $50\,\mathrm{cm^3}$ of $2.0\,\mathrm{mol\,dm^{-3}}$ of hydrochloric acid reacting with excess calcium carbonate chips at $20\,^\circ\mathrm{C}$?

- A line A
- B line B
- C line C
- D line D
- E line E

2016

BMAT Chemistry Compilation 2009 - 2016

Rates

6 Which row in the table correctly explains why an increase in temperature increases the rate of a reaction?

	Effect on activation energy of reaction	Effect on collision frequency between particles	Effect on proportion of collisions which are successful
Α	decreases	no effect	increases
В	increases	no effect	no effect
С	no effect	increases	no effect
D	increases	increases	no effect
E	decreases	no effect	no effect
F	no effect	no effect	increases
G	decreases	increases	increases
н	no effect	increases	increases

2014

26 The addition of NO as a catalyst to a mixture of SO₂ and O₂ speeds up the following reaction:

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$$

The following reactions could be involved in the process.

1.
$$N_2 + O_2 \rightarrow 2NO$$

2.
$$\frac{1}{2}N_2 + O_2 \rightarrow NO_2$$

3. NO +
$$\frac{1}{2}O_2 \rightarrow NO_2$$

5.
$$SO_2 + NO \rightarrow SO_3 + \frac{1}{2}N_2$$

6.
$$SO_2 + NO_2 \rightarrow SO_3 + NO$$

Which one of the following shows the most likely course of the overall reaction?

- A 3, 1
- **B** 3, 6
- C 5, 1
- **D** 3, 2, 4
- E 5, 2, 4

BMAT Chemistry Compilation 2009 - 2016

Rates

- 22 At room temperature, a reaction is very fast if no bonds are broken while it takes place, and is slow if bonds have to be broken.
 - 1 $H_2 + I_2 \rightarrow 2HI$
 - 2 $Ag^+ + Cl^- \rightarrow AgCl$
 - 3 $\dot{C}H_3 + \dot{C}H_3 \rightarrow C_2H_6$
 - 4 OH + CH₃Br \rightarrow CH₃OH + Br

Which of the following are the two fastest reactions?

- A 1 and 2
- **B** 1 and 3
- C 1 and 4
- **D** 2 and 3
- E 2 and 4
- F 3 and 4

2009