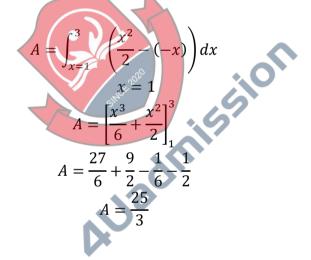
Worked Solutions for ENGAA Papers by Topic


Section 1

Topic: Matter & Thermal Physics

Section 1 Topic	Number of Questions 2016 - 2020
Algebra	34
Calculus	16
Coordinate geometry	11
Electricity	18
Energy	8
Exponentials and logarithms	9
Forces and equilibrium	
Geometry	40
Kinematics	15
Materials	2 5 55
Matter & thermal physics	5
Mechanics	55
Number	11
Probability	3
Radioactivity	14
Ratio and proportion	7
Sequences and series	8
Trigonometry	6
Waves	13

- 24 What is the area of the region enclosed between the curve $y = \frac{1}{2}x^2$, the line y = -x, and the lines x = 1 and x = 3?
 - **A** $\frac{1}{3}$ **B** 2 **C** 4 **D** 6 **E** $\frac{25}{3}$ **F** $\frac{28}{3}$

ENGAA S1 2020 - Question 24 - Worked Solution

34 The curve

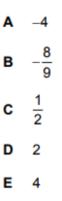
$$y = x^3 + 3\sqrt{5}px^2 + 3px + 13$$

has two distinct turning points.

What are all the possible values of p?

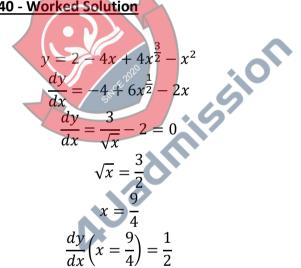
- **A** p < 0, p > 0.2
- **B** $p \le 0$, $p \ge 0.2$
- **C** 0 < p < 0.2
- **D** $0 \le p \le 0.2$
- **E** p < 0, p > 1.2
- $\mathbf{F} \quad p \leq \mathbf{0} \ , \ p \geq \mathbf{1.2}$
- **G** 0 < *p* < 1.2
- **H** $0 \le p \le 1.2$

ENGAA S1 2020 - Question 34 - Worked Solution


$$\frac{dy}{dx} = 3x^2 + 6\sqrt{5}px + 3p$$

= $ax^2 + bx + c$
For definite turning point
 $b^2 - 4ac > 0$
 $180p^2 - 36p > 0$
 $p = 0 \text{ or } p = \frac{1}{5}$
we need $36p(5p - 1) > 0$

$$p < 0$$
 , $p > \frac{1}{5}$


40 Find the maximum value of the gradient of the curve with equation

$$y = 2 - 4x + 4x^{\frac{3}{2}} - x^2$$

where x > 0

ENGAA S1 20	20 - Question	40 - Worked	Solutio

23 The curve

$$y = x^3 + px^2 + qx + r$$

 \frown

has a local maximum when x = -1 and a local minimum when x = 3

What is the value of p?

A -9 B -3

C –1

D 1

E 3

F 9

ENGAA S1 2019 - Question 23 - Worked Solution

$$y' = 3x^{2} + 2px + q$$

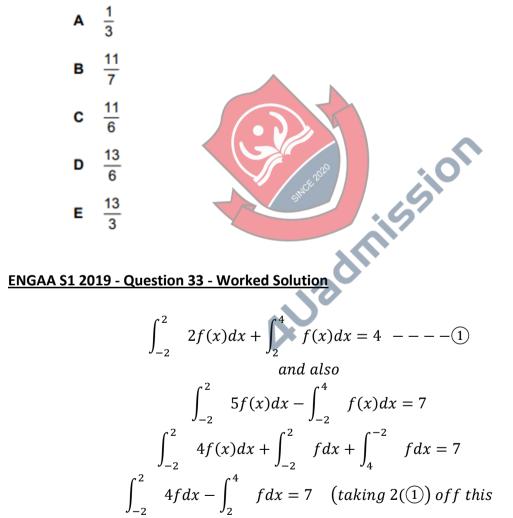
$$y' = 0 \text{ when } x = -1 \text{ and } x = 3 \text{ , sub in}$$

$$3 - 2p + q = 0$$

$$27 + 6p + q = 0$$

$$27 - 3 + 6p + 2p + q - q = 0$$

$$p = -3$$


33 For a particular function f(x), it is given that:

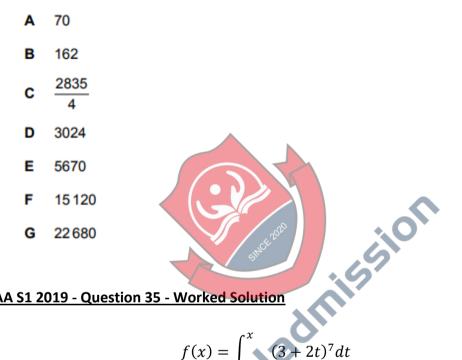
$$\int_{-2}^{2} 2f(x) dx + \int_{2}^{4} f(x) dx = 4$$

and also:

$$\int_{-2}^{2} 5f(x) dx - \int_{-2}^{4} f(x) dx = 7$$

Find the value of $\int_{2}^{4} f(x) dx$

$$\int_{2}^{2} 4f dx - 2 \int_{-2}^{2} 2f dx - \int_{2}^{4} f dx - 2 \int_{2}^{4} f dx = 7 - 2 \times 4$$
$$0 - 3 \int_{2}^{4} f dx = -1$$


$$\therefore \int_{2}^{4} f dx = \frac{-1}{-3} = \frac{1}{3}$$

Answer is A ENGAA S1 2019 - Question 35

> 35 Given that

$$f(x) = \int_0^x (3+2t)^7 \, \mathrm{d}t$$

what is the coefficient of x^4 in the expansion of f(x) in powers of x?

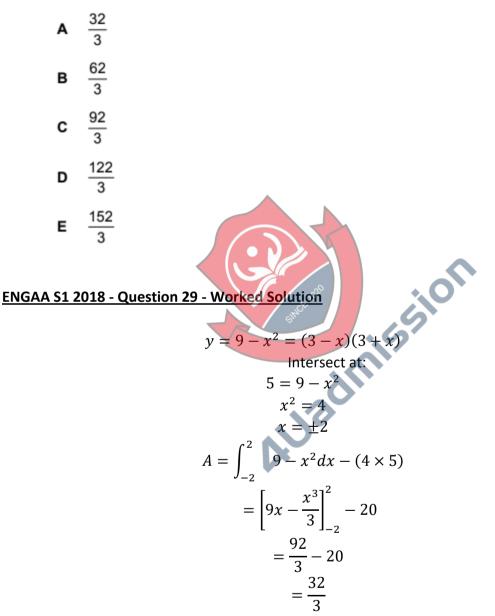
ENGAA S1 2019 - Question 35 - Worked Solution

$$f(x) = \int_{0}^{x} (3+2t)^{7} dt$$

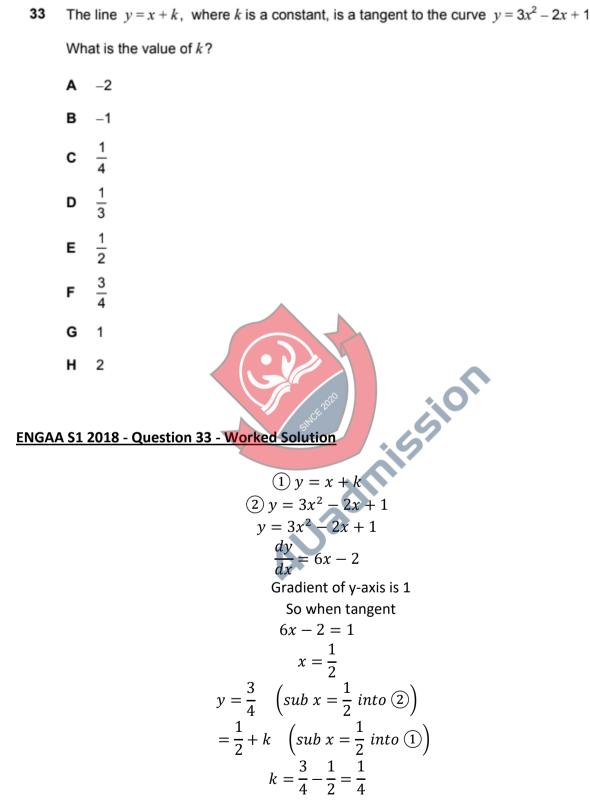
$$f(x) = \int (C_{0} + C_{1}t + C_{2}t^{2} + C_{3}t^{3} + \dots + +C_{7}t^{7}) dt$$

$$t^{3} term will go to x^{4}$$

$$C_{3}t^{3} = \frac{7!}{3! \, 4!} \cdot 3^{4}(2t)^{3} = 35 \times 81 \times 8t^{3}$$


$$= 5670 \times 4t^{3}$$

$$5670 \times \int_{0}^{x} 4t^{3} = 5670x^{4}$$

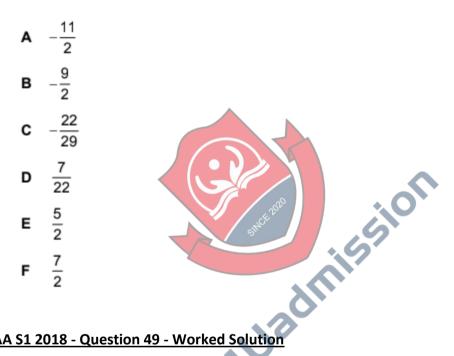

29 Curve C has equation $y = 9 - x^2$

Line L has equation y = 5

What is the area enclosed between C and L?

Answer is A.

Answer is C.


49 Given that

$$\int_0^2 x^m dx = \frac{16\sqrt{2}}{7}$$

and

$$\int_{0}^{2} x^{m+1} \mathrm{d}x = \frac{32\sqrt{2}}{9}$$

what is the value of m?

ENGAA S1 2018 - Question 49 - Worked Solution

$$\int_{0}^{2} x^{m} dx = \frac{16\sqrt{2}}{7}$$
$$\left[\frac{x^{m+1}}{m+1}\right]_{0}^{2} = \frac{16\sqrt{2}}{7}$$
$$\frac{2^{m+1}}{m+1} = \frac{16\sqrt{2}}{7} \quad (1)$$
$$\int_{0}^{2} x^{m+1} dx = \frac{32\sqrt{2}}{9}$$
$$\left[\frac{x^{m+2}}{m+2}\right]_{0}^{2} = \frac{32\sqrt{2}}{9}$$
$$\frac{2^{m+2}}{m+2} = \frac{32\sqrt{2}}{9} \quad (2)$$
$$(2) \quad (1)$$

www.oxbridgemind.co.uk

$$2 \times \frac{m+1}{m+2} = \frac{32}{9} \times \frac{7}{16}$$
$$(m+1) = \frac{1}{2} \times \frac{14}{9} (m+2)$$
$$9m+9 = 7m+14$$
$$2m = 5$$
$$m = 5/2$$

51 The two functions f and g satisfy

$$f'(x) = ax + g(x)$$

where a is a constant.

Given that

$$\int_{2}^{4} g(x) \, \mathrm{d}x = 12$$

and

$$f(4) = 18 + f(2)$$

what is the value of a?

ENGAA S1 2018 - Question 51 - Worked Solution

$$f'(x) = ax + g(x)$$

$$\frac{df}{dx} = ax + g(x)$$

$$\int_{2}^{4} g(x)dx = 12$$

$$\int_{2}^{4} \frac{dt}{dx}dx = \left[\frac{ax^{2}}{2}\right]_{2}^{4} + \int_{2}^{4} g(x)dx$$

$$\int_{2}^{4} dt = \frac{16a}{2} - \frac{4a}{2} + 12 \quad (1)$$

$$f(4) - f(2) = 6a + 12$$

$$f(4) - f(2) = 18 \quad (2)$$

$$8 = 6a + 12$$

$$6 = 6a$$

a = 1

Answer is A.

ENGAA S1 2017 - Question 39

39 The graph of the function $y = x^3 + px^2 + qx + 6$, where *p* and *q* are real constants, has a local maximum when x = 2 and a local minimum when x = 4.

What are the values of *p* and *q*?

- A p=-3 and q=-8
- **B** p=-3 and q=8
- **c** p=3 and q=-8
- **D** p = -9 and q = 24
- **E** p=9 and q=24
- **F** p=9 and q=-24

ENGAA S1 2017 - Question 39 - Worked Solution

$$\frac{dy}{dx} = 3x^{2} + 2px + q$$

$$At \ maximum : \frac{dy}{dx} = 0$$

$$x = 2 :$$

$$3(2)^{2} + 2p \times 2 + q = 0$$

$$\Rightarrow 4p + q + 12 = 0 \quad -----(1)$$

$$x = 4 :$$

$$3(4)^{2} + 2p \times 4 + q = 0$$

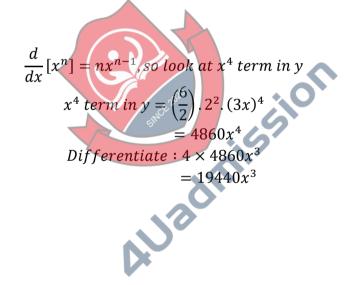
$$\Rightarrow 48 + 8p + q = 0 \quad ----(2)$$

$$(2) \cdot (1)$$

$$4p + 36 = 0$$

$$\Rightarrow p = -\frac{36}{4} = -9$$
Sub p = -9 into (1)

$$q = -12 - 4p$$


$$q = -12 + (4 \times 9)$$

$$q = 24$$

43 Given that
$$y = (2+3x)^6$$
, what is the coefficient of x^3 in $\frac{dy}{dx}$?

- **A** 240
- **B** 4320
- **C** 4860
- D 12960
- E 19440

ENGAA S1 2017 - Question 43 - Worked Solution

51 The curve $y = \sin x$ is stretched by a scale factor of $\frac{1}{2}$ parallel to the *x*-axis and then translated by $\frac{\pi}{4}$ in the negative *x*-direction.

What is the equation of the new curve?

A
$$y = \sin\left(\frac{x}{2} - \frac{\pi}{4}\right)$$

B $y = \sin\left(\frac{x}{2} + \frac{\pi}{4}\right)$
C $y = \sin\left(\frac{x}{2} - \frac{\pi}{8}\right)$
D $y = \sin\left(\frac{x}{2} + \frac{\pi}{8}\right)$
E $y = \sin\left(2x - \frac{\pi}{4}\right)$
F $y = \sin\left(2x + \frac{\pi}{4}\right)$
G $y = \sin\left(2x - \frac{\pi}{2}\right)$
H $y = \sin\left(2x + \frac{\pi}{2}\right)$

ENGAA S1 2017 - Question 51 - Worked Solution

Initially:

$$y = sin sin (x)$$

Stretch in x-axis
 $x \to 2x$
Translation :
 $x \to x + \frac{\pi}{4}$
 $\Rightarrow y = sin sin \left(2\left(x + \frac{\pi}{4}\right)\right)$
 $y = sin sin \left(2x + \frac{\pi}{2}\right)$

43 $f(x) = x^3 - a^2 x$ where *a* is a positive constant.

Find the complete set of values of x for which f(x) is an increasing function.

A
$$x \le -a, x \ge a$$

B $-a \le x \le a$
C $x \le -a, 0 \le x \le a$
D $-a \le x \le 0, x \ge a$
E $x \le -\frac{a}{3}, x \ge \frac{a}{3}$
F $-\frac{a}{3} \le x \le \frac{a}{3}$
G $x \le -\frac{a}{\sqrt{3}}, x \ge \frac{a}{\sqrt{3}}$
H $-\frac{a}{\sqrt{3}} \le x \le \frac{a}{\sqrt{3}}$
ENGAA S1 2016 - Question 43 - Worked Solution
 $f(x) = x^3 - a^3 x$
 $f'x = 3x^2 - a^2$
 $f'x = 3\left(x^2 - \left(\frac{a}{\sqrt{3}}\right)^2\right) > 0$
 $3\left(x^2 - \left(\frac{a}{\sqrt{3}}\right)^2\right) > 0$
 $3\left(x + \frac{a}{\sqrt{3}}\right)\left(x - \frac{a}{\sqrt{3}}\right) > 0$

$$x \le -\frac{a}{\sqrt{3}}$$
, $x \ge \frac{a}{\sqrt{3}}$

45 The curve $y = x^2$ is translated by the vector $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$ and then reflected in the line y = -1

Which one of the following is an equation of the resulting curve?

A
$$y = -3 - (x - 4)^2$$

B
$$y = -3 + (x+4)^2$$

C $y = 3 - (x + 4)^2$

D
$$y = 3 + (x - 4)^2$$

E
$$y = -5 - (x - 4)^2$$

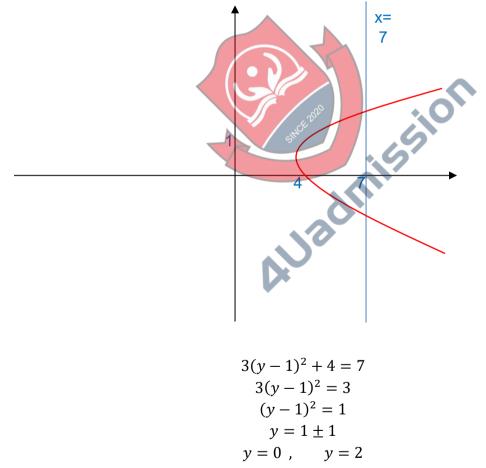
- **F** $y = -5 + (x+4)^2$
- **G** $y = 5 (x + 4)^2$
- **H** $y = 5 + (x 4)^2$

ENGAA S1 2016 - Question 45 - Worked Solution

First the translation

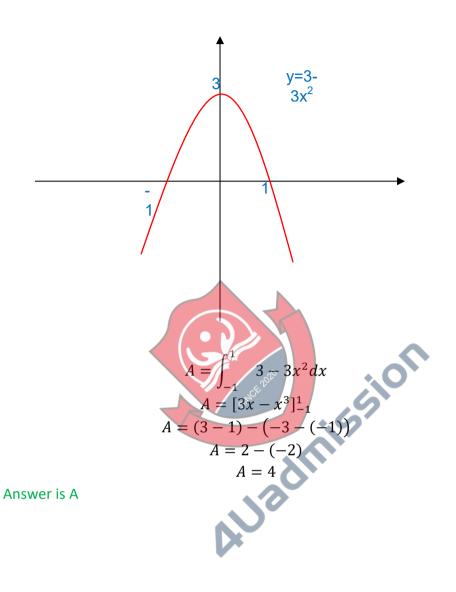
This transforms the curve into

 $y = (x - 4)^2 + 3$ As this is a shift to the right by 4 and up by 3.


Then the reflection, the bottom point of the curve is 4 units above the line y = -1 and it is a positive quadratic.

After the reflection it will be 4 units below the line and a negative quadratic.

$$y = -(x-4)^2 - 5$$


- 51 What is the area enclosed by the line x = 7 and the curve $x = 3(y-1)^2 + 4$?
 - A 4
 B 8
 C 10
 D 11
 E 14
 F 20

ENGAA S1 2016 - Question 51 - Worked Solution

Imagine the line x = 7 as the x axis.

The area enclosed by the parabola $x = 3(y-1)^2 + 4$ and x = 7 is the same as the area enclosed by the x axis and the parabola $y = 3 - 3x^2$

