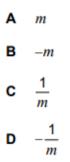
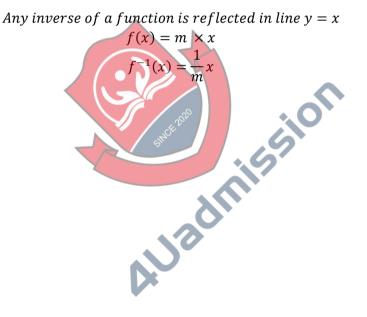
Worked Solutions for ENGAA Papers by Topic


Section 1

Topic: Coordinate geometry

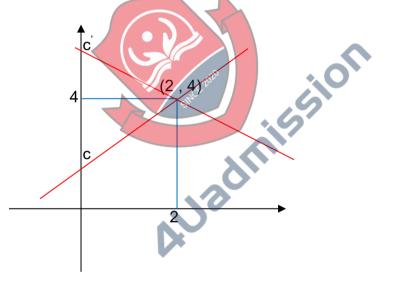

Section 1 Topic	Number of Questions 2016 - 2020
Algebra	34
Calculus	16
Coordinate geometry	11
Electricity	18
Energy	8
Exponentials and logarithms	9
Forces and equilibrium	
Geometry	40
Kinematics	15
Materials	2
Matter & thermal physics	2 5 55
Mechanics	55
Number	11
Probability	3
Radioactivity	14
Ratio and proportion	7
Sequences and series	8
Trigonometry	6
Waves	13

26 A line with non-zero gradient *m* is reflected in the line y = x

What is the gradient of the reflected line?

ENGAA S1 2020 - Question 26 - Worked Solution

Answer is C


30 The line L with equation y = mx + c, where m > 0 and $c \ge 0$, passes through the point (2, 4). A line is drawn through the point (2, 4) perpendicular to L.

The triangle enclosed between the two lines and the y-axis has area 5 square units.

What is the **larger** of the two possible values of *m*?

- A -0.5
- **B** 0.5
- C 1.25
- **D** 2
- **E** 5

ENGAA S1 2020 - Question 30 - Worked Solution

$$\frac{1}{2}(C'-C) \times 2 = 5$$

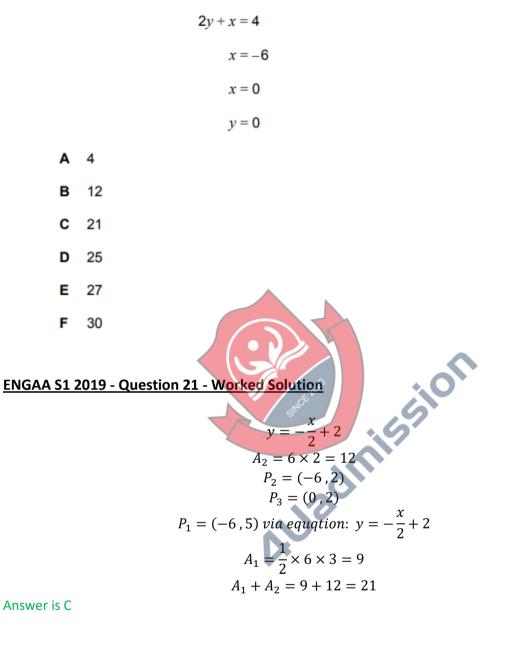
$$C'-C = 5$$

$$y = mx + C$$

$$y = -\frac{1}{m}x + C'$$

$$2m + \frac{2}{m} = 5$$

$$\vdots$$


m = 2

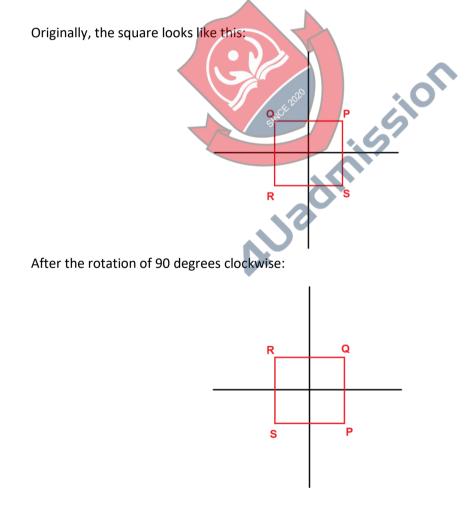
Answer is D

$$m = \frac{1}{2}$$

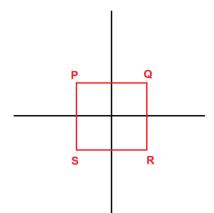
21 Find the area of the shape bounded by the four lines:

Answer is C

ENGAA Specimen S1 - Question 19


19 The square PQRS is positioned so that its vertices are at the points with coordinates: (1, 1), (-1, 1), (-1, -1) and (1, -1).

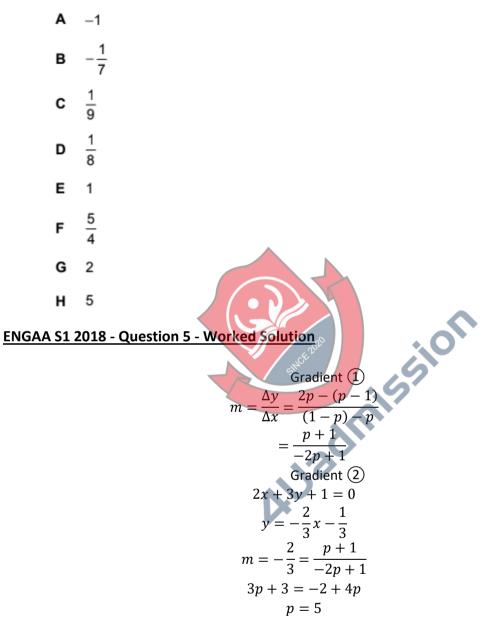
The square is rotated clockwise through 90° about the origin and then reflected in the line y = x.


Which transformation will return the square to its original orientation?

- A A reflection in the *x*-axis.
- B A reflection in the y-axis.
- **C** A reflection in the line y = -x.
- **D** A rotation of 90° clockwise about the origin.
- **E** A rotation of 90° anticlockwise about the origin.

ENGAA Specimen S1 - Question 19 - Worked Solution

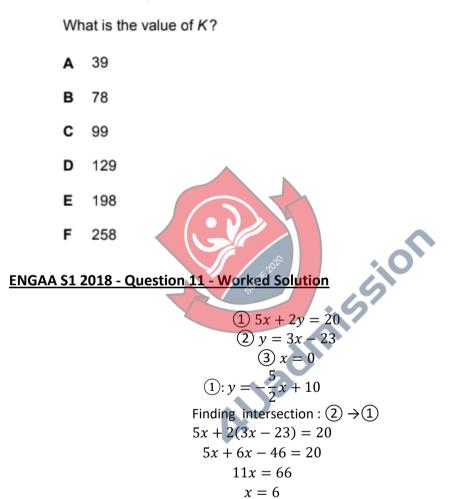
After a reflection in the line y = x:


A reflection of this in the y-axis will return this square to the original position.

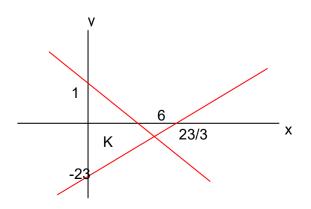
Answer is B

5 The line joining the points with coordinates (p, p-1) and (1-p, 2p) is parallel to the line with equation 2x + 3y + 1 = 0

What is the value of p?



Answer is H.


11 The straight lines

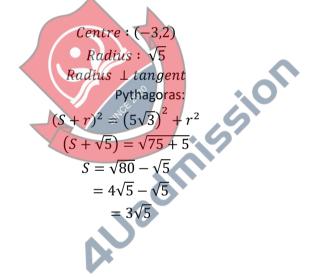
$$5x + 2y = 20$$
$$y = 3x - 23$$
$$x = 0$$

enclose a region with area K square units.

Sketch lines:

$$x = \frac{1}{2} \times 6 \times 33 = 99$$

Answer is C.


43 Circle C has equation $(x + 3)^2 + (y - 2)^2 = 5$

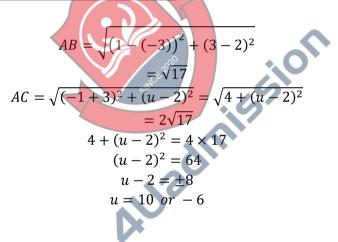
The length of the tangent from the circle C to the point P is $5\sqrt{3}$

What is the shortest distance from P to C?

- A 5√3
- **B** $5\sqrt{3} + \sqrt{5}$
- **C** 3√5
- **D** 5
- **E** 10

ENGAA S1 2018 - Question 43 - Worked Solution

Answer is C.


45 The points A (-3,2), B (1,3) and C (-1, u) are such that the distances AC and AB are related by:

AC = 2AB

What are the possible values of u?

- A 2 and -6
- B -2 and 6
- C 6 and -10
- D -6 and 10
- **E** $2+2\sqrt{13}$ and $2-2\sqrt{13}$
- **F** $-3+2\sqrt{13}$ and $-3-2\sqrt{13}$

ENGAA S1 2018 - Question 45 - Worked Solution

Answer is D.

53 The equations of two straight lines are $y=3+(2p^2-p)x$ and y=7+(p-2)x, where p is a real constant.

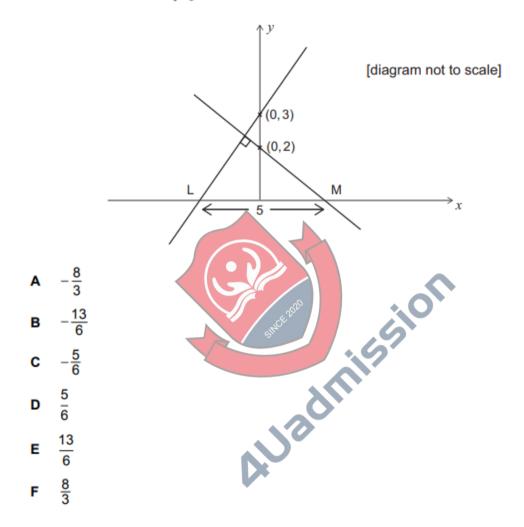
For certain values of p, the two lines are perpendicular.

Which of the following numbers is closest to the greatest such value of p?

- **A** 2.00
- **B** 1.75
- **C** 1.50
- **D** 1.00
- E -0.25
- F -0.50

ENGAA S1 2017 - Question 53 - Worked Solution

 $perpendicular \Rightarrow (2p^{2} - p)(p - 2) = -1$ Product of gradients is -1 $\Rightarrow 2p^{3} - 5p^{2} + 2p + 1 = 0 - - - - - - 1$ Try p =1 LHS = 2 - 5 + 2 + 1 = 0 \Rightarrow p = 1 is a root, (p - 1) is a factor Use this to factorize (1) $2p^{3} - 5p^{2} + 2p + 1 = (p - 1)(2p^{2} - 3p - 1) = 0$ Now need to solve: $(p - 1)(2p^{2} - 3p - 1) = 0$ p = 1, $(2p^{2} - 3p - 1) = 0$ Solving quadratic: $p = \frac{3 \pm \sqrt{9 - 8}}{4}$ $= \frac{3}{4} \pm \frac{\sqrt{17}}{4}$ $\sqrt{16} = 4 \Rightarrow \frac{\sqrt{17}}{4} > 1$, so the greatest value at p is $p = \frac{3}{4} + \frac{\sqrt{17}}{4} \qquad (\sqrt{17} \approx 4)$ $\approx \frac{3}{4} + 1$


$$= 1.75$$

Answer is B.

41 The straight line with equation y = mx + 3, where m > 0, $m \ne 1$, is perpendicular to the line with equation y = px + 2

The lines cut the x-axis at the points L and M respectively. The length of LM is 5 units.

What is the value of m + p given that m > 1?

ENGAA S1 2016 - Question 41 - Worked Solution

Since the lines are perpendicular, the product of their gradients is -1.

$$mp = -1 \ --- - (1)$$

To find the x intercepts, set y to 0.

$$0 = mx + 3 \implies x = -\frac{3}{m} \implies L \gg \left(-\frac{3}{m}, 0\right)$$

$$0 = px + 2 \implies x = -\frac{2}{p} \implies M \implies \left(-\frac{2}{p}, 0\right)$$

$$LM = 5$$

$$-\frac{2}{p} + \frac{3}{m} = 5$$

$$\frac{3p - 2m}{mp} = 5$$

$$3p - 2m = -5$$

$$3p + \frac{2}{p} = -5$$

$$3p^{2} + 5p = 2 = 0$$

$$(3p + 2)(p + 1) = 0$$

$$p = -\frac{2}{3}, \quad p = -1$$

$$\implies m = \frac{3}{2}, m = 1 \text{ but } m \neq 1$$

$$\therefore p = -\frac{2}{3}, \quad m = \frac{3}{2}$$

$$m + p = \frac{5}{6}$$

Answer is D

49 A cursor starts at the point (0, 10) and moves parallel to the x-axis in the negative direction.

What is the minimum distance parallel to the *y*-axis between the cursor and the graph of $y = 4x^3 - 12x^2 - 36x - 15$?

- **A** 0
- **B** 5
- C 25
- **D** 69
- E 133

ENGAA S1 2016 - Question 49 - Worked Solution

The cursor is at the point, (x, 10) when $x \le 0$ The distance parallel to the y axis from the curve to the cursor $s = 10 - (4x^3 - 12x^2 - 36x - 15)$ $s = -4x^3 + 12x^2 = 36x + 25$ $\frac{ds}{dx} = -12x^2 + 24x + 36$ to find s_{min} , set $\frac{ds}{dx}$ to 0 $-12x^2 + 24x + 36 = 0$ $-12(x^2 - 2x - 3) = 0$ (x - 3)(x + 1) = 0x = 3, x = -1

 $x = 3 \ can't$ be the solution as the cursor moves in negative x Verify x = -1 is in fact a minimum by evaluating the second derivative

$$\frac{d^2s}{d^2x} = -24x + 24 = 48 > 0$$

$$s = -4(-1)^3 + 12(-1)^2 + 36(-1) + 25$$

$$s = 4 + 12 - 36 + 25 = 5$$

Answer is B