STEP Past Papers by Topic

STEP Topic – Analysis

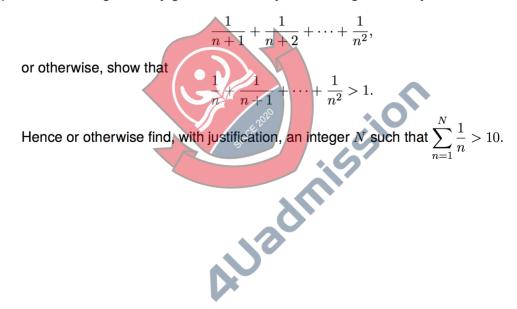
STEP I 1991 Question 9 (Pure)

9 (i) Suppose that the real number *x* satisfies the *n* inequalities

$$1 < x < 2
2 < x2 < 3
3 < x3 < 4
\vdots
n < xn < n + 1$$

Prove without the use of a calculator that $n \leq 4$.

(ii) If n is an integer strictly greater than 1, by considering how many terms there are in



STEP II 1987 Question 7 (Pure)

7 Prove that

$$\tan^{-1}t = t - \frac{t^3}{3} + \frac{t^5}{5} - \dots + \frac{(-1)^n t^{2n+1}}{2n+1} + (-1)^{n+1} \int_0^t \frac{x^{2n+2}}{1+x^2} \, \mathrm{d}x.$$

Hence show that, if $0 \leq t \leq 1$, then

$$\frac{t^{2n+3}}{2(2n+3)} \leqslant \left| \tan^{-1} t - \sum_{r=0}^{n} \frac{(-1)^r t^{2r+1}}{2r+1} \right| \leqslant \frac{t^{2n+3}}{2n+3}$$

Show that, as $n \to \infty$,

$$4\sum_{r=0}^{n}\frac{(-1)^{r}}{(2r+1)} \to \pi,$$

 $\sum_{n=1}^{n} \frac{(-1)^r}{(2r+1)}$ is at least 10^{-2} if n is less than or equal but that the error in approximating π by Aladinission to 98.

STEP II Specimen Question 5 (Pure)

5 Explain, by means of a sketch, or otherwise, why

$$\sum_{r=n}^{\infty} \frac{1}{r^2} > \int_n^{\infty} \frac{\mathrm{d}x}{x^2} > \sum_{r=n+1}^{\infty} \frac{1}{r^2}.$$

Deduce that

$$\frac{1}{n} > A - \sum_{r=1}^{n} \frac{1}{r^2} > \frac{1}{n+1}, \qquad \text{where } A = \sum_{r=1}^{\infty} \frac{1}{r^2}.$$

Find the smallest value of n for which $\sum_{r=1}^{n} \frac{1}{r^2}$ approximates A with an error of less than 10^{-4} . Show that, for this n,

$$\frac{1}{n+1} + \sum_{r=1}^{n} \frac{1}{r^2}$$

approximates A with an error of less than 10^{-8}

STEP II 1995 Question 4 (Pure)

4 Let

$$u_n = \int_0^{\frac{1}{2}\pi} \sin^n t \, \mathrm{d}t$$

for each integer $n \ge 0$. By integrating

$$\int_0^{\frac{1}{2}\pi} \sin t \sin^{n-1} t \,\mathrm{d}t$$

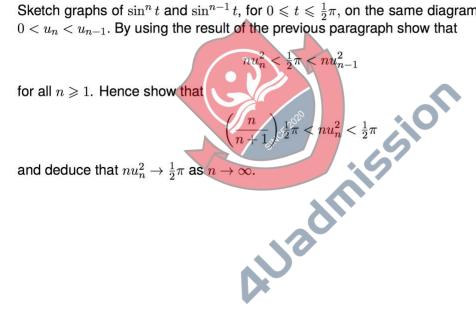
by parts, or otherwise, obtain a formula connecting u_n and u_{n-2} when $n \ge 2$ and deduce that

$$nu_n u_{n-1} = (n-1)u_{n-1}u_{n-2}$$

for all $n \ge 2$. Deduce that

$$nu_nu_{n-1} = \frac{1}{2}\pi.$$

Sketch graphs of $\sin^n t$ and $\sin^{n-1} t$, for $0 \le t \le \frac{1}{2}\pi$, on the same diagram and explain why $0 < u_n < u_{n-1}$. By using the result of the previous paragraph show that



STEP | 1999 Question 8 (Pure)

8 The function f satisfies $0 \le f(t) \le K$ when $0 \le t \le x$. Explain by means of a sketch, or otherwise, why

$$0 \leqslant \int_0^x \mathbf{f}(t) \, \mathrm{d}t \leqslant Kx.$$

By considering $\int_0^1 \frac{t}{n(n-t)} \, \mathrm{d}t$, or otherwise, show that, if n>1,

$$0\leqslant \ln\left(\frac{n}{n-1}\right)-\frac{1}{n}\leqslant \frac{1}{n-1}-\frac{1}{n}$$

and deduce that

$$0 \leq \ln N - \sum_{n=2}^{N} \frac{1}{n} \leq 1.$$

Deduce that as $N \to \infty$

Noting that $2^{10} = 1024$, show also that if $N < 10^{30}$ then $\sum_{n=1}^{N} \frac{1}{n} \neq \infty.$ 101.

STEP II 2003 Question 7 (Pure)

7 Show that, if n > 0, then

$$\int_{e^{1/n}}^{\infty} \frac{\ln x}{x^{n+1}} \, \mathrm{d}x = \frac{2}{n^2 \mathrm{e}} \; .$$

You may assume that $\frac{\ln x}{x} \to 0 \;\; {\rm as} \; x \to \infty \, .$ Explain why, if 1 < a < b , then

$$\int_b^\infty \frac{\ln x}{x^{n+1}} \,\mathrm{d} x < \int_a^\infty \frac{\ln x}{x^{n+1}} \,\mathrm{d} x \;.$$

Deduce that

$$\sum_{n=1}^{N} \frac{1}{n^2} < \frac{\mathrm{e}}{2} \int_{\mathrm{e}^{1/N}}^{\infty} \left(\frac{1 - x^{-N}}{x^2 - x} \right) \ln x \, \mathrm{d}x \; ,$$

where N is any integer greater than 1.

STEP II 2012 Question 4 (Pure)

4 In this question, you may assume that the infinite series

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$$

is valid for |x| < 1.

(i) Let n be an integer greater than 1. Show that, for any positive integer k,

$$\frac{1}{(k+1)n^{k+1}} < \frac{1}{kn^k} \,.$$

Hence show that $\ln \left(1 + \frac{1}{n} \right) < \frac{1}{n}$. Deduce that

$$\left(1+\frac{1}{n}\right)^n < \mathbf{e}\,.$$

 $\left(1+\frac{1}{n}\right)^n \to \mathrm{e}\,.$

 $1\rangle^{n+\frac{1}{2}}$

- (ii) Show, using an expansion in powers of $\frac{1}{y}$, that $\ln\left(\frac{2y+1}{2y-1}\right) > \frac{1}{y}$ for $y > \frac{1}{2}$. Deduce that, for any positive integer n, ∞
- (iii) Use parts (i) and (ii) to show that as $n \to \infty$

STEP III 2000 Question 7 (Pure)

7 Given that

$$\mathbf{e} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{r!} + \dots ,$$

use the binomial theorem to show that

$$\left(1+\frac{1}{n}\right)^n < \epsilon$$

for any positive integer n.

The product P(n) is defined, for any positive integer n, by

$$P(n) = \frac{3}{2} \cdot \frac{5}{4} \cdot \frac{9}{8} \cdot \ldots \cdot \frac{2^{n} + 1}{2^{n}}.$$

Use the arithmetic-geometric mean inequality,

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge (a_1 \cdot a_2 \cdot \dots \cdot a_n)^{\frac{1}{n}},$$

to show that P(n) < e for all n.

at this limit, i Explain briefly why P(n) tends to a limit as $n \to \infty$. Show that this limit, L, satisfies $2 < L \leq e$.

STEP I 1995 Question 5 (Pure)

5 If

$$\mathbf{f}(x) = nx - \binom{n}{2}\frac{x^2}{2} + \binom{n}{3}\frac{x^3}{3} - \dots + (-1)^{r+1}\binom{n}{r}\frac{x^r}{r} + \dots + (-1)^{n+1}\frac{x^n}{n},$$

show that

$$f'(x) = \frac{1 - (1 - x)^n}{x}.$$

Deduce that

$$f(x) = \int_{1-x}^{1} \frac{1-y^n}{1-y} \, dy.$$

Hence show that

$$f(1) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

STEP II 2006 Question 2 (Pure)

2 Using the series

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots,$$

show that $e > \frac{8}{3}$.

Show that $n! > 2^n$ for $n \ge 4$ and hence show that $e < \frac{67}{24}$.

Show that the curve with equation

$$y = 3e^{2x} + 14\ln(\frac{4}{3} - x), \qquad x < \frac{4}{3}$$

has a minimum turning point between $x = \frac{1}{2}$ and x = 1 and give a sketch to show the shape of the curve.

STEP I 1997 Question 6 (Pure)

6 Find constants a_0 , a_1 , a_2 , a_3 , a_4 , a_5 , a_6 and b such that

$$x^{4}(1-x)^{4} = (a_{6}x^{6} + a_{5}x^{5} + a_{4}x^{4} + a_{3}x^{3} + a_{2}x^{2} + a_{1}x + a_{0})(x^{2} + 1) + b.$$

Hence, or otherwise, prove that

$$\int_0^1 \frac{x^4 (1-x)^4}{1+x^2} \mathrm{d}x = \frac{22}{7} - \pi.$$

Evaluate $\int_0^1 x^4 (1-x)^4 \mathrm{d}x$ and deduce that

$$\frac{22}{7} > \pi > \frac{22}{7} - \frac{1}{630}$$

STEP III 2004 Question 3 (Pure)

Given that f''(x) > 0 when $a \leq x \leq b$, explain with the aid of a sketch why 3

$$(b-a)\operatorname{f}\left(\frac{a+b}{2}\right) < \int_{a}^{b} \operatorname{f}(x) \, \mathrm{d}x < (b-a) \, \frac{\operatorname{f}(a) + \operatorname{f}(b)}{2} \, .$$

By choosing suitable a, b and f(x), show that

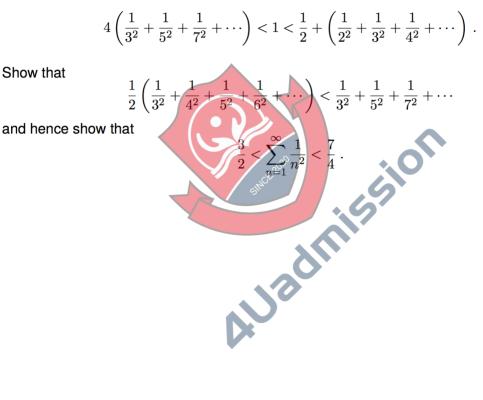
$$\frac{4}{(2n-1)^2} < \frac{1}{n-1} - \frac{1}{n} < \frac{1}{2} \left(\frac{1}{n^2} + \frac{1}{(n-1)^2} \right) \,,$$

where n is an integer greater than 1.

Deduce that

$$4\left(\frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots\right) < 1 < \frac{1}{2} + \left(\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots\right).$$

Show that



STEP II 1999 Question 8 (Pure)

8 Prove that

$$\sum_{k=0}^{n} \sin k\theta = \frac{\cos \frac{1}{2}\theta - \cos(n + \frac{1}{2})\theta}{2\sin \frac{1}{2}\theta} .$$
 (*)

(i) Deduce that, when n is large,

$$\sum_{k=0}^{n} \sin\left(\frac{k\pi}{n}\right) \approx \frac{2n}{\pi}$$

(ii) By differentiating (*) with respect to θ , or otherwise, show that, when n is large,

$$\sum_{k=0}^{n} k \sin^2\left(\frac{k\pi}{2n}\right) \approx \left(\frac{1}{4} + \frac{1}{\pi^2}\right) n^2 \,.$$

[The approximations, valid for small θ , $\sin \theta \approx \theta$ and $\cos \theta \approx 1 - \frac{1}{2} \theta^2$ may be assumed.]

STEP I 1996 Question 6 (Pure)

6 Let
$$f(x) = \frac{\sin(n + \frac{1}{2})x}{\sin \frac{1}{2}x}$$
 for $0 < x \le \pi$.

(i) Using the formula

$$2\sin\frac{1}{2}x\cos kx = \sin(k+\frac{1}{2})x - \sin(k-\frac{1}{2})x$$

(which you may assume), or otherwise, show that

$$f(x) = 1 + 2\sum_{k=1}^{n} \cos kx.$$

(ii) Find $\int_0^{\pi} f(x) dx$ and $\int_0^{\pi} f(x) \cos x dx$.

STEP III 1995 Question 4 (Pure)

4 Let

$$\mathcal{C}_n(\theta) = \sum_{k=0}^n \cos k\theta$$

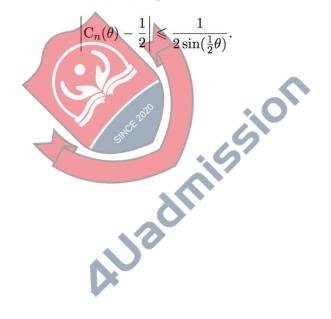
and let

$$\mathbf{S}_n(\theta) = \sum_{k=0}^n \sin k\theta,$$

where *n* is a positive integer and $0 < \theta < 2\pi$. Show that

$$C_n(\theta) = \frac{\cos(\frac{1}{2}n\theta)\sin(\frac{1}{2}(n+1)\theta)}{\sin(\frac{1}{2}\theta)},$$

and obtain the corresponding expression for $S_n(\theta)$. Hence, or otherwise, show that for $0 < \theta < 2\pi$,



STEP II 1998 Question 3 (Pure)

3 Show that the sum S_N of the first N terms of the series

$$\frac{1}{1\cdot 2\cdot 3} + \frac{3}{2\cdot 3\cdot 4} + \frac{5}{3\cdot 4\cdot 5} + \dots + \frac{2n-1}{n(n+1)(n+2)} + \dots$$

is

$$\frac{1}{2}\left(\frac{3}{2} + \frac{1}{N+1} - \frac{5}{N+2}\right).$$

What is the limit of S_N as $N \to \infty$?

The numbers a_n are such that

$$\frac{a_n}{a_{n-1}} = \frac{(n-1)(2n-1)}{(n+2)(2n-3)}.$$

Find an expression for a_n/a_1 and hence, or otherwise, evaluate $\sum_{n=1}^{\infty} a_n$ when $a_1 = \frac{2}{9}$.

STEP II 2015 Question 1 (Pure)

1 (i) By use of calculus, show that $x - \ln(1 + x)$ is positive for all positive x. Use this result to show that

$$\sum_{k=1}^{n} \frac{1}{k} > \ln(n+1) \,.$$

(ii) By considering $x + \ln(1-x)$, show that

$$\sum_{k=1}^{\infty} \frac{1}{k^2} < 1 + \ln 2$$

STEP | 2011 Question 5 (Pure)

5 Given that 0 < k < 1, show with the help of a sketch that the equation

$$\sin x = kx \tag{(*)}$$

has a unique solution in the range $0 < x < \pi$. Let

$$I = \int_0^\pi \left| \sin x - kx \right| \mathrm{d}x \,.$$

Show that

$$I = \frac{\pi^2 \sin \alpha}{2\alpha} - 2 \cos \alpha - \alpha \sin \alpha \,,$$

where α is the unique solution of (*).

Show that *I*, regarded as a function of α , has a unique stationary value and that this stationary value is a minimum. Deduce that the smallest value of *I* is

STEP III 2014 Question 8 (Pure)

8 The numbers f(r) satisfy f(r) > f(r+1) for r = 1, 2, ... Show that, for any non-negative integer n,

$$k^{n}(k-1) \operatorname{f}(k^{n+1}) \leq \sum_{r=k^{n}}^{k^{n+1}-1} \operatorname{f}(r) \leq k^{n}(k-1) \operatorname{f}(k^{n})$$

where k is an integer greater than 1.

(i) By taking f(r) = 1/r, show that

$$\frac{N+1}{2}\leqslant \sum_{r=1}^{2^{N+1}-1}\frac{1}{r}\leqslant N+1\,.$$

Deduce that the sum $\sum_{r=1}^{\infty} \frac{1}{r}$ does not converge.

- (ii) By taking $f(r) = 1/r^3$, show that
- (iii) Let S(n) be the set of positive integers less than n which do not have a 2 in their decimal representation and let $\sigma(n)$ be the sum of the reciprocals of the numbers in S(n), so for example $\sigma(5) = 1 + \frac{1}{3} + \frac{1}{4}$. Show that S(1000) contains $9^3 - 1$ distinct numbers. Aladin

Show that $\sigma(n) < 80$ for all n.

STEP III 2014 Question 6 (Pure)

6 Starting from the result that

$$\mathbf{h}(t) > 0 \text{ for } 0 < t < x \Longrightarrow \int_0^x \mathbf{h}(t) \, \mathrm{d}t > 0 \,,$$

show that, if f''(t) > 0 for $0 < t < x_0$ and f(0) = f'(0) = 0, then f(t) > 0 for $0 < t < x_0$.

(i) Show that, for $0 < x < \frac{1}{2}\pi$,

 $\cos x \cosh x < 1.$

(ii) Show that, for $0 < x < \frac{1}{2}\pi$,

STEP III 2015 Question 2 (Pure)

2 If s_1, s_2, s_3, \ldots and t_1, t_2, t_3, \ldots are sequences of positive numbers, we write

 $(s_n) \leqslant (t_n)$

to mean

"there exists a positive integer m such that $s_n \leq t_n$ whenever $n \geq m$ ".

Determine whether each of the following statements is true or false. In the case of a true statement, you should give a proof which includes an explicit determination of an appropriate *m*; in the case of a false statement, you should give a counterexample.

(i)
$$(1000n) \leq (n^2)$$
.

- (ii) If it is not the case that $(s_n) \leq (t_n)$, then it is the case that $(t_n) \leq (s_n)$.
- Auadmission (iii) If $(s_n) \leq (t_n)$ and $(t_n) \leq (u_n)$, then $(s_n) \leq (u_n)$
- (iv) $(n^2) \leq (2^n)$.