

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

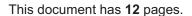
CHEMISTRY 9701/22

Paper 2 AS Level Structured Questions

February/March 2025

1 hour 15 minutes

You must answer on the question paper.


No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

- 1 Phosphorus and chlorine are elements in Period 3 of the Periodic Table.
 - (a) Chlorine forms three different compounds with phosphorus.

The most common compounds are PCl_3 and PCl_5 .

(i) Complete Table 1.1.

Table 1.1

compound	oxidation number of P	oxidation number of Cl
PCl ₃		
PCl ₅		

[2]

(ii) In a closed system, PCl_3 and PCl_5 exist in an equilibrium mixture as shown in reaction 1.

reaction 1

$$PCl_3(I) + Cl_2(g) \rightleftharpoons PCl_5(s)$$

$$\Delta H = -124 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Deduce **two** conditions that favour the production of PCl_5 in reaction 1.

2 [2]

(iii) The third compound of phosphorus and chlorine, **W**, has a relative molecular mass, M_r , between that of PCl_3 and PCl_5 . The compound contains 69.6% by mass of chlorine.

Determine the molecular formula of W.

(iv) W is a liquid at room temperature and pressure. It reacts vigorously with water to form an acidic solution.

Suggest the structure and bonding in ${\bf W}$. Explain your answer.

3

(b) Fig. 1.1 shows a reaction scheme involving ${\rm P_4}$ and ${\rm C}l_2$.

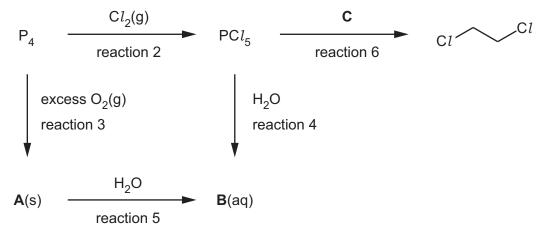


Fig. 1.1

- (i) Suggest what is observed in reaction 2.

 [1]

 (ii) Predict the shape of a molecule of PCl₅.

 [1]

 (iii) Write an equation for the formation of A in reaction 3.

 [1]

 (iv) Name B, which is formed in both reactions 4 and 5.

 [1]
- (v) Draw the structure of C, used in reaction 6.

[1]

1,2-dichloroethane, ClCH2CH2Cl, reacts with NaOH to produce an unsaturated compound,

 C_2H_3Cl , as shown in reaction 7.

 $\text{reaction 7} \qquad \qquad \text{ClCH}_2\text{Cl} + \text{NaOH} \rightarrow \text{C$}_2\text{H$}_3\text{Cl} + \text{H$}_2\text{O} + \text{NaC$l$}$

(i) State what is meant by unsaturated.

.....

(ii) State the conditions for reaction 7.

.....[1]

(d) Compound **D** contains carbon, hydrogen and chlorine **only**.

Fig. 1.2 shows the mass spectrum of **D**.

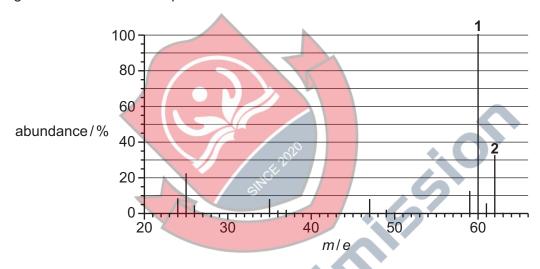


Fig. 1.2

(i) Explain the relative abundance of peaks 1 and 2 in the mass spectrum in Fig. 1.2.

(ii) Suggest the structure of **D**.

[1]

[Total: 17]

	*	80000	0000005 *	II I EE I				
					5			
2	(a)	The	e Group 2 elements show	ıı ıı. metallic bond	ding.			
	()		•		J			
		Dei	ine metallic bonding.					
								[2]
	(b)	The	Group 2 elements form	stable 2+ cati	ons.			
		(i)	State and explain the va	ariation in ioni	c radius of the	Group 2 eleme	ents down the g	roup.
						•	_	
								[2]
		/ii\	Table 2.1 shows succes	ecivo ionicatio	n oporav valuor	s for borullium	Po.	
		(ii)	Table 2.1 Shows succes			s for beryllium,	, De.	
				Table	e 2.1			
				1st	2nd	3rd	4th	
		ionis	sation energy/kJmol ⁻¹	900	20° 1760	14800	21 000	
			Use Table 2.1 to state a	nd evolain:				•
						6		
			the general trend in the significance of			the 2nd and 3	rd ionisation en	ergies
			and digimilation of	and large anilo	CITO DOLLYCON	and End did of		J. 9100.
						· · · · · · · · · · · · · · · · · · ·		

[2]

- (c) All the Group 2 elements except beryllium have more than one stable isotope.
 - (i) Beryllium exists as the single isotope ⁹₄Be.

Describe the distribution of mass within an atom of ⁹ ₄ Be.			
[2			

(ii) Complete Table 2.2 to show the numbers of protons and neutrons in the isotopes of magnesium.

Table 2.2

isotope	number of protons	number of neutrons
magnesium-24		
magnesium-25		
magnesium-26		

(iii) Fig. 2.1 shows the behaviour of a beam of protons in an electric field.

Complete Fig. 2.1 to show the behaviour of separate beams of neutrons and electrons in the same electric field.

Label your diagram clearly. Assume that the beams of each particle are moving at the same velocity.

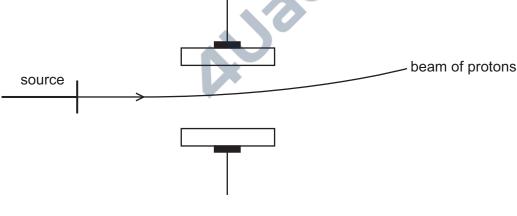


Fig. 2.1

[3]

* 00000000000 *

7

(d)	(i)	State what is observed when dilute hydrochloric acid is added to separate samples barium oxide and barium carbonate.	of
		barium oxide	
		barium carbonate	 [2]
	<i>(</i>)		[4]
	(ii)	Write an equation for the reaction of strontium, Sr, with an excess of cold water.	
			[1]
((iii)	State the variation in solubility of the Group 2 sulfates down the group.	
			[1]

3

The halogens chlorine, bromine and iodine show trends in chemical and physical properties down the group.

8

Table 3.1 shows some properties of chlorine, bromine and iodine.

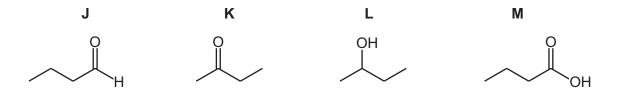
Table 3.1

property	chlorine	bromine	iodine
colour and state at room temperature	green gas		
bond energy/kJ mol ⁻¹	242	193	151
electronegativity	3.0	2.8	2.5
formula of sodium halide	NaC <i>l</i>	NaBr	NaI

(a)	(i)	Complete Table 3.1.	[1]
	(ii)	The bond energy values in Table 3.1 refer to the X—X bond where X is the halogen.	
		Explain the trend in the bond strength of the X—X bond in the halogens.	
(b)	Exp	plain, with the use of an equation, how chlorine, Cl_2 , is used in water purification. te the role of the active species produced.	[2]
		te the fole of the active species produced.	
(c)	The	e sodium halides in Table 3.1 also show trends in chemical properties.	
	(i)	Identify the sodium halide that reacts with concentrated $\rm H_2SO_4$ to form $\rm H_2S$.	
			[1]
	(ii)	Identify the sodium halide that ${\bf only}$ undergoes a Brønsted-Lowry acid-base reactivity the sodium halide that ${\bf only}$ undergoes a Brønsted-Lowry acid-base reactivity the sodium halide that ${\bf only}$ undergoes a Brønsted-Lowry acid-base reactivity.	tion
			[1]
	(iii)	A student adds a few drops of ${\rm AgNO_3(aq)}$ to a solution of NaBr(aq). State what observed.	t is
			[1]

9

(d) Iodine monobromide, IBr, is a dark red solid that melts near room temperature.


IBr reacts with propene. The mechanism for this reaction is the same as the mechanism for that of HBr with propene.

(i)	Identify all the intermolecular forces that exist between molecules of IBr.	
		[1]
(ii)	Name the mechanism involved in the reaction of IBr with propene.	[1]
(iii)	The reaction of IBr with propene forms two structural isomers.	
	Draw the two structural isomers shown by these molecules.	
	Short S	[2]
(iv)	Identify the type of structural isomerism shown by the molecules in (d)(iii).	[1]
(v)	Explain why the two structural isomers do not form in equal amounts.	

[Total: 15]

88||| 88||| 88||8 | 18||| 88||| 88||| 88||| 88||| 88||| 88||| 88|| | 18|| 88|| 18||

10

Fig. 4.1 shows compounds **J** to **M**, each of which contains four carbon atoms.

Fig. 4.1

(a) Table 4.1 gives details of tests on **J** to **M**. In each test, only **two** compounds give a positive result.

Complete Table 4.1.

Table 4.1

reagent	observation of positive result	compounds that give a positive result
acidified K ₂ Cr ₂ O ₇ (aq)		J and L
alkaline I ₂ (aq)	yellow precipitate	Sion
	orange precipitate	J and K
Na(s)	DY	

[5]

* 0000800000011 *

(b) K reacts with HCN in the presence of a KCN catalyst, forming N.

(i) Complete Fig. 4.2 to show the mechanism for this reaction.

Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

11

Fig. 4.2

[4]

(ii) Identify the class of compound of which ${\bf N}$ is a member.

.....[1]

(iii) N has a chiral centre.

Explain what is meant by a chiral centre.

[1]

[Total: 11]

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L = 6.02 \times 10^{23} \text{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 ^{\circ}C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

Elements	
φ	
Table	
Periodic	
The	

		1											_			_			_			7
	18	F ₂	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	궃	krypton 83.8	75	Xe	xenon 131.3	98	R	radon	118	Ö	oganesson	
	17			6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Ā	bromine 79.9	53	П	iodine 126.9	85	¥	astatine _	117	<u>S</u>	tennessine	
	16			8	0	oxygen 16.0	16	ഗ	sulfur 32.1	34	Se	selenium 79.0	52	<u>e</u>	tellurium 127.6	84	Ъ	polonium	116		livermorium	
	15			7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sp	antimony 121.8	83	ïā	bismuth 209.0	115	Mc	moscovium	
	41	-		9	ပ	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	90	Sn	tin 118.7	82	Вр	lead 207.2	114	Εl	flerovium	
	13			2	Ф	boron 10.8	13	Ν	aluminium 27.0	31	Ga	gallium 69.7	49	I	indium 114.8	18	11	thallium 204.4	113	۲	nihonium	
		-							12	30	Zn	zinc 65.4	48	g	cadmium 112.4	80	ĒΉ	mercury 200.6		ပ်	8	
									11	29	Cu	copper 63.5	47	Ag	silver 107.9	79	Au	gold 197.0	111	Rg	roentgenium	
Group	dho			4					10	28	N	nickel 58.7	46	Pd	palladium 106.4	78	Ŧ	platinum 195.1			Ε	
٢	5								6	27	Co	cobalt 58.9	45	R	rhodium 102.9	77	1	iridium 192.2	109	¥	meitnerium	
		- I	hydrogen 1.0		4		1	7	80	26	Fe	iron 55.8	44	Ru	ruthenium 101.1	9/	Os	osmium 190.2	108	Hs	hassium	
									7	25	Mn	manganese 54.9	43	ပ	technetium	75	Re	rhenium 186.2	107	Bh	bohrium	
					pol	ass			9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium	
			Key	atomic number	atomic symbol	name relative atomic mass			2	23	>	vanadium 50.9	41	qN	niobium 92.9	73	<u>n</u>	tantalum 180.9	105	90	dubnium	
					ato	rela			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	Ŗ	rutherfordium 	
									က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57–71	lanthanoids		89–103	actinoids		
	2			4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium	
	_			3	:=	lithium 6.9	1	Na	sodium 23.0	19	メ	potassium 39.1	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	Ļ	francium	

_						
71	Pn	lutetium 175.0	103	۲	lawrencium	ı
70	Υb	ytterbium 173.1	102	%	nobelium	ı
69	Tm	thulium 168.9	101	Md	mendelevium	ı
89	ш	erbium 167.3	100	Fm	fermium	ı
29	H	holmium 164.9	66	Es	einsteinium	ı
99	Dy	dysprosium 162.5	86	Ç	californium	ı
65	Tp	terbium 158.9	97	Ř	berkelium	ı
64	РÐ	gadolinium 157.3	96	Cm	curium	ı
63	Eu	europium 152.0	95	Am	americium	ı
62	Sm	samarium 150.4	96	Pu	plutonium	ı
61	Pm	promethium	93	ď	neptunium	ı
09	PΝ	neodymium 144.2	92	\supset	uranium	238.0
26	Ą	praseodymium 140.9	91	Ра	protactinium	231.0
58	Ce	cerium 140.1	06	H	thorium	232.0
57	La	anthanum 138.9	88	Ac	actinium	ı

lanthanoids actinoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.