Cambridge International AS & A Level | CHEMISTRY | 970 | 11/3 | |-------------------|-----------|------| | NUMBER | NUMBER | | | CENTRE | CANDIDATE | | | CANDIDATE
NAME | | | February/March 2025 2 hours You must answer on the question paper. You will need: The materials and apparatus listed in the confidential instructions #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do **not** write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. ### **INFORMATION** - The total mark for this paper is 40. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. - Important values, constants and standards are printed in the question paper. - Notes for use in qualitative analysis are provided in the question paper. | Session | | |------------|--| | | | | Laboratory | | | | | | · | | | For Examiner's Use | | |--------------------|--| | 1 | | | 2 | | | 3 | | | Total | | This document has 12 pages. #### **Quantitative Analysis** Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided. 2 Show the precision of the apparatus you used in the data you record. Show your working and appropriate significant figures in the final answer to **each** step of your calculations. 1 Potassium alum is a hydrated salt containing aluminium ions, potassium ions and sulfate ions. 1 mol of hydrated potassium alum contains 12 mol of water of crystallisation. Hydrated potassium alum decomposes when heated, losing its water of crystallisation and becoming anhydrous. You will determine the formula of potassium alum by heating the hydrated salt until it becomes anhydrous. FA 1 is hydrated potassium alum. ### (a) Method - Weigh a crucible with its lid. Record the mass in the space for results. - Add all of the FA 1 to the crucible. - Weigh the crucible and lid with FA 1. Record the mass. - Calculate and record the mass of FA 1 added. - Place the crucible on the pipe-clay triangle. Heat the crucible and contents gently for approximately 2 minutes with the lid on. - Remove the lid. Heat the crucible and contents strongly for approximately 5 minutes. - Replace the lid and leave the crucible and residue to cool for at least 5 minutes. #### While the crucible is cooling, you may begin work on Question 2 or Question 3. - Reweigh the crucible and contents with the lid on. Record the mass. - Remove the lid. Heat the crucible and contents strongly for a further 2 minutes. - Replace the lid and leave the crucible and residue to cool for at least 5 minutes. - Reweigh the crucible and residue with the lid on. Record the mass. - Calculate and record the mass of residue obtained. #### Results © UCLES 2025 | I | | |-----|--| | II | | | III | | | IV | | | V | | | [5] | | ## (b) Calculations (i) Calculate the amount, in mol, of water of crystallisation lost during the thermal decomposition of **FA 1**. 3 (ii) Use the information given and your answer to (b)(i) to determine the amount, in mol, of potassium alum used. (iii) Calculate the relative formula mass, M_r, of anhydrous potassium alum. $$M_{\rm r} = \dots [1]$$ (iv) Anhydrous potassium alum contains aluminium ions, potassium ions and sulfate ions. 1 mol of potassium alum also contains 1 mol of aluminium ions. Use the $M_{\rm r}$ you have calculated in **(b)(iii)** to suggest the formula of anhydrous potassium alum. Show your working. 4 (c) (i) The uncertainty in a single balance reading for a two decimal place balance is 0.01 g. Calculate the maximum percentage error in your measurement of the mass of the residue of anhydrous potassium alum. Show your working. | maximum | percentage error | = | .% | [1] |] | |---------|------------------|---|----|-----|---| |---------|------------------|---|----|-----|---| (ii) A student obtains a higher value for the relative formula mass, M_r , of anhydrous potassium alum than expected. The student incorrectly suggests that this is because some of the anhydrous potassium alum residue decomposes to aluminium oxide and potassium oxide during strong heating. Explain why the student's suggestion is not correct. [Total: 11] 2 Many oxidising agents are able to oxidise acidified potassium iodide to iodine in acidic conditions. The amount of iodine produced can be determined by titrating it with aqueous sodium thiosulfate. 5 $$I_2(aq) + 2Na_2S_2O_3(aq) \rightarrow 2NaI(aq) + Na_2S_4O_6(aq)$$ You will determine the change in oxidation state of an oxidising agent when it reacts with iodide ions. **FA 2** is aqueous sodium thiosulfate, containing 22.00 g Na₂S₂O₃•5H₂O (M_r = 248.2) in 1.00 dm³. **FA 3** is a 0.0175 mol dm⁻³ solution of an oxidising agent. **FA 4** is 0.50 mol dm⁻³ potassium iodide, KI. **FA 5** is $1.00 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H_2SO_4}$. FA 6 is starch solution. ### (a) Method - Fill the burette with FA 2. - Pipette 25.0 cm³ of FA 3 into a conical flask. - Use the 10.0 cm³ measuring cylinder to add 10 cm³ of **FA 4**, an excess, to the conical flask. - Use the 25.0 cm³ measuring cylinder to add 20 cm³ of **FA 5**, an excess, to the conical flask. - Add FA 2 from the burette until the solution becomes yellow. - Add about 10 drops of FA 6 to the conical flask. - Perform a rough titration and record your burette readings in the space below. - Carry out as many accurate titrations as you think necessary to obtain consistent results. - Make sure any recorded results show the precision of your practical work. - Record, in a suitable form in the space below, all your burette readings and the volume of FA 2 added in each accurate titration. Madi Keep FA 3, FA 4, FA 5 and FA 6 for use in Question 3. (b) From your accurate titration results, calculate a suitable mean value to use in your calculations. Show clearly how you obtain the mean value. 25.0 cm³ of **FA 3** required cm³ of **FA 2** [1] ### (c) Calculations - (i) Give your answers to (c)(ii), (c)(iii) and (c)(iv) to an appropriate number of significant figures. - (ii) Calculate the amount, in mol, of sodium thiosulfate in the volume of FA 2 in (b). amount of $$Na_2S_2O_3 = \dots mol$$ [1] (iii) Calculate the amount, in mol, of iodine that reacts with the amount of sodium thiosulfate in (c)(ii). amount of $$I_2$$ =mol [1] (iv) Calculate the amount, in mol, of FA 3 used to produce the amount of iodine in (c)(iii). (v) Calculate the amount, in mol, of iodine produced by the reaction of 1 mol of FA 3 with potassium iodide. Give your answer to one decimal place. (vi) The oxidising agent in FA 3 is a compound of a transition metal, M. The redox reaction of **FA 3** with iodide ions produces M^{2+} ions. Use your answer to (c)(v) to calculate the change in the oxidation state of M during this reaction. Show your working. (d) A student suggests that the experiment in (a) would be more accurate if the FA 5, sulfuric acid, is measured using a pipette. State whether the student is correct. Explain your angular. State whether the student is correct. Explain your answer. [Total: 16] ### **Qualitative Analysis** For each test you should record all your observations in the spaces provided. Examples of observations include: - colour changes seen - the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added 7 the formation of any gas and its identification (where appropriate) by a suitable test. You should record clearly at what stage in a test an observation is made. Where no change is observed, you should write 'no change'. Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given. If any solution is warmed, a boiling tube must be used. If a solid is heated, a hard-glass test-tube must be used. Rinse and reuse test-tubes and boiling tubes where possible. No additional tests should be attempted. (a) Carry out the following tests using FA 3 and record your observations in Table 3.1. 3 Use a 1 cm depth of FA 3 in a test-tube for each test. Table 3.1 | test | observations | |--|--------------| | Test 1 Add an equal volume of aqueous sodium hydroxide, then | | | add an equal volume of aqueous sodium sulfite. Shake the mixture in the tube, then | | | add sulfuric acid, FA 5 . | | | Test 2 Add an equal volume of sulfuric acid, FA 5, then add a small spatula measure of zinc. Allow the mixture to stand. | | | Test 3 Add an equal volume of aqueous hydrogen peroxide. | | Give the formula of the gas formed in **Test 3**. The gas formed is [4] (b) (i) FA 7 is a solution containing four ions, three of which are listed in the Qualitative analysis notes. 8 Carry out the following tests and record your observations in Table 3.2. Use a 1cm depth of **FA 7** for each test. A boiling tube **must** be used for Test 1 and a test-tube for the other tests. Table 3.2 | test | observations | |---|--------------| | Test 1 Add 0.5 cm depth of aqueous sodium hydroxide to a boiling tube, then | | | warm the mixture carefully ,
then | | | add aluminium foil. | | | Test 2 Add several drops of aqueous potassium iodide, FA 4, then | | | add a few drops of starch solution, FA 6 . | SINGER S | | Test 3 Add the pieces of magnesium. | | | Test 4 Add a few drops of aqueous barium nitrate or aqueous barium chloride, then | | | add hydrochloric acid. | | | Test 5 Add a few drops of aqueous silver nitrate, then | | | add aqueous ammonia. | | Give the formula of each of the four ions in **FA** 7. | | The ions are and and | [2] | |-------|--|-----| | (iii) | Give the ionic equation for one reaction that takes place in Test 1 or Test 3 of (b)(i) . Include state symbols. | | | | | [1] | 9 [Total: 13] # Qualitative analysis notes ## 1 Reactions of aqueous cations | cation | reaction with | | |---|--|--| | | NaOH(aq) | NH ₃ (aq) | | aluminium, Al ³⁺ (aq) | white ppt. soluble in excess | white ppt. insoluble in excess | | ammonium, NH ₄ ⁺ (aq) | no ppt.
ammonia produced on warming | _ | | barium, Ba ²⁺ (aq) | faint white ppt. is observed unless [Ba ²⁺ (aq)] is very low | no ppt. | | calcium, Ca ²⁺ (aq) | white ppt. unless [Ca ²⁺ (aq)] is very low | no ppt. | | chromium(III), Cr ³⁺ (aq) | grey-green ppt. soluble in excess giving dark green solution | grey-green ppt. insoluble in excess | | copper(II), Cu ²⁺ (aq) | pale blue ppt. insoluble in excess | pale blue ppt. soluble in excess giving dark blue solution | | iron(II), Fe ²⁺ (aq) | green ppt. turning brown on contact with air insoluble in excess | green ppt. turning brown on contact with air insoluble in excess | | iron(III), Fe ³⁺ (aq) | red-brown ppt. insoluble in excess | red-brown ppt. insoluble in excess | | magnesium, Mg ²⁺ (aq) | white ppt. insoluble in excess | white ppt. insoluble in excess | | manganese(II), Mn ²⁺ (aq) | off-white ppt. rapidly turning brown on contact with air insoluble in excess | off-white ppt. rapidly turning brown on contact with air insoluble in excess | | zinc, Zn ²⁺ (aq) | white ppt. soluble in excess | white ppt. soluble in excess | ## 2 Reactions of anions | anion | reaction | |---|---| | carbonate, CO ₃ ²⁻ | CO ₂ liberated by dilute acids | | chloride, Cl ⁻ (aq) | gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)) | | bromide, Br ⁻ (aq) | gives cream/off-white ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq)) | | iodide, I ⁻ (aq) | gives pale yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq)) | | nitrate, NO ₃ ⁻ (aq) | NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil | | nitrite, NO ₂ ⁻ (aq) | ${ m NH_3}$ liberated on heating with ${ m OH^-}({ m aq})$ and ${ m A}l$ foil; decolourises acidified aqueous ${ m KMnO_4}$ | | sulfate, SO ₄ ²⁻ (aq) | gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids); gives white ppt. with high [Ca ²⁺ (aq)] | | sulfite, SO ₃ ²⁻ (aq) | gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO ₄ | | thiosulfate, S ₂ O ₃ ²⁻ (aq) | gives off-white/pale yellow ppt. slowly with H ⁺ | ## 3 Tests for gases | gas | test and test result | |---------------------------------|-----------------------------------| | ammonia, NH ₃ | turns damp red litmus paper blue | | carbon dioxide, CO ₂ | gives a white ppt. with limewater | | hydrogen, H ₂ | 'pops' with a lighted splint | | oxygen, O ₂ | relights a glowing splint | 11 #### 4 Tests for elements | element | test and test result | |------------------------|--| | iodine, I ₂ | gives blue-black colour on addition of starch solution | # Important values, constants and standards | molar gas constant | $R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$ | |---------------------------------|---| | Faraday constant | $F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$ | | Avogadro constant | $L = 6.02 \times 10^{23} \mathrm{mol}^{-1}$ | | electronic charge | $e = -1.60 \times 10^{-19} $ C | | molar volume of gas | $V_{\rm m} = 22.4 {\rm dm^3 \frac{mol^{-1}}{mol^{-1}}}$ at s.t.p. (101kPa and 273K)
$V_{\rm m} = 24.0 {\rm dm^3 \frac{mol^{-1}}{mol^{-1}}}$ at room conditions | | ionic product of water | $K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 ^{\circ}C))$ | | specific heat capacity of water | $c = 4.18 \text{ kJkg}^{-1} \text{ K}^{-1} (4.18 \text{ Jg}^{-1} \text{ K}^{-1})$ | | | | | The Periodic Table of Elements | | |--------------------------------|------| | he Periodic Table of Elen | en | | he Periodic Table o | leπ | | he Periodic Tab | 6 | | he Periodio | Tab | | he Pe | iodi | | _ |) Pe | | | _ | Τ | | č | | | |-------|----|-----|-----------------|---------------|--------------|------------------------------|----|----|--------------------|----|----|-------------------|----|----------|--------------------|-------|-------------|-------------------|--------|-----------|---------------|---|--| | | 18 | F 5 | helium
4.0 | 10 | Ne | neon
20.2 | 18 | Ą | argon
39.9 | 36 | 첫 | krypton
83.8 | 54 | ×e | xenon
131.3 | 98 | R | radon | 118 | Ö | oganesso | ı | | | | 17 | | | 6 | щ | fluorine
19.0 | 17 | Cl | chlorine
35.5 | 35 | Ā | bromine
79.9 | 53 | Н | iodine
126.9 | 85 | ¥ | astatine | 117 | Υ <u></u> | tennessine | ı | | | | 16 | | | 8 | 0 | oxygen
16.0 | 16 | ഗ | sulfur
32.1 | 34 | Se | selenium
79.0 | 52 | <u>e</u> | tellurium
127.6 | 84 | Ъ | polonium | 116 | ^ | livermorium | ı | | | | 15 | | | 7 | z | nitrogen
14.0 | 15 | ۵ | phosphorus
31.0 | 33 | As | arsenic
74.9 | 51 | Sb | antimony
121.8 | 83 | ï | bismuth | 115 | Mc | moscovium | ı | | | | 14 | | | 9 | ပ | carbon
12.0 | 14 | S | silicon
28.1 | 32 | Ge | germanium
72.6 | 50 | Sn | tin
118.7 | 82 | Pb | lead | 114 | Fl | flerovium | 1 | | | | 13 | | | 2 | Ф | boron
10.8 | 13 | Αl | aluminium
27.0 | 31 | Ga | gallium
69.7 | 49 | I | indium
114.8 | 81 | 11 | thallium | 113 | Ϋ́ | nihonium | 1 | | | | | | | | | | | | 12 | 30 | Zn | zinc
65.4 | 48 | පි | cadmium
112.4 | 80 | Ë | mercury | 112 | ű | copernicium | ı | | | | | | | | | | | | 17 | 29 | Cu | copper
63.5 | 47 | Ag | silver
107.9 | 79 | Au | gold | 111 | Rg | roentgenium | 1 | | | Group | | | | 4 | | | | | 10 | 28 | N | nickel
58.7 | 46 | Pd | palladium
106.4 | 78 | F | platinum | 110 | Ds | darmstadtium | I | | | ρ̈́ | | | | | | | | | 6 | 27 | 00 | cobalt
58.9 | 45 | 몬 | rhodium
102.9 | 77 | 7 | iridium
102.2 | 109 | Ħ | meitnerium | ı | | | | | - I | hydrogen
1.0 | | 4 | | 1 | 1 | 80 | 26 | Fe | iron
55.8 | 4 | Ru | ruthenium
101.1 | 9/ | Os | osmium
100.2 | 108 | H | hassium | 1 | | | | | | | | | | | | 7 | 25 | Mn | manganese
54.9 | 43 | ည | technetium | 75 | Re | rhenium | 107 | Bh | pohrium | 1 | | | | | | | | pol | ass | | | 9 | 24 | ပ် | chromium
52.0 | 42 | Мо | molybdenum
95.9 | 74 | > | tungsten | 106 | Sg | seaborgium | I | | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | 2 | 23 | > | vanadium
50.9 | 41 | gN | niobium
92.9 | 73 | ā | tantalum
180 o | 105 | Op | dubnium | ı | | | | | | | | atc | rek | | | 4 | 22 | F | titanium
47.9 | 40 | Zr | zirconium
91.2 | 72 | Ξ | hafnium
178 F | 104 | Ŗ | rutherfordium | ı | | | | | | | | | | | | က | 21 | Sc | scandium
45.0 | 39 | > | yttrium
88.9 | 57-71 | lanthanoids | | 89–103 | actinoids | | | | | | 2 | | | 4 | Be | beryllium
9.0 | 12 | Mg | magnesium
24.3 | 20 | Ca | calcium
40.1 | 38 | Š | strontium
87.6 | 56 | Ва | barium | 88 | Ra | radium | 1 | | | | ~ | | | 3 | := | lithium
6.9 | 1 | Na | sodium
23.0 | 19 | × | potassium
39.1 | 37 | Rb | rubidium
85.5 | 55 | CS | caesium | 87 | Ļ | francium | ı | | | | _ | | | | | | | | |--|-----|----|--------------|-------|-----|-----------|--------------|-------| | | 7.1 | P | lutetium | 175.0 | 103 | ۲ | lawrencium | ı | | | 20 | ХÞ | ytterbium | 173.1 | 102 | No | nobelium | ı | | | 69 | H | thulium | 168.9 | 101 | Md | mendelevium | ı | | | 89 | ш | erbinm | 167.3 | 100 | Fn | ferminm | 1 | | | 29 | 웃 | holmium | 164.9 | 66 | Es | einsteinium | ı | | | 99 | ۵ | dysprosium | 162.5 | 86 | Ç | californium | ı | | | 65 | Д | terbium | 158.9 | 26 | 益 | berkelium | ı | | | 28 | В | gadolinium | 157.3 | 96 | Cm | curium | ı | | | 63 | Eu | europium | 152.0 | 96 | Am | americium | ı | | | 62 | Sm | samarium | 150.4 | 94 | Pn | plutonium | ı | | | 61 | Pm | promethium | ı | 93 | ď | neptunium | ı | | | 09 | PZ | neodymium | 144.2 | 92 | \supset | uranium | 238.0 | | | 59 | Ā | praseodymium | 140.9 | 91 | Ра | protactinium | 231.0 | | | 58 | Ce | cerium | 140.1 | 06 | Ч | thorium | 232.0 | | | | Га | nanum | 38.9 | 68 | Ac | inium | ı | | | 25 | _ | lanth | ~ | | _ | act | | lanthanoids actinoids To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.