

NATURAL SCIENCES ADMISSIONS ASSESSMENT

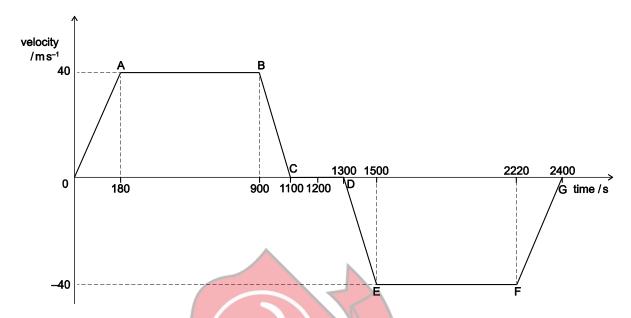
SPECIMEN PAPER and ANSWER BOOKLET

40 minutes

SECTION 2
Candidate number N Centre number
d d m m y y y
Date of Birth
First name(s)
Surname / Family Name
INSTRUCTIONS TO CANDIDATES
Please read these instructions carefully, but do not open the question paper until you are told that you may do so. This paper is Section 2 of 2.
There are six questions in this paper, of which you should answer any two.
There are 25 marks for each question. In total 50 marks are available.
You should write your answers in the spaces provided in this question paper. Please complete this section in black pen. Pencil may be used for graphs and diagrams only.
You can use the blank inside front and back covers for rough working or notes, but no extra paper is allowed. Only answers in the spaces indicated in the paper will be marked.
Calculators may be used in this section. Please record your calculator model in the box below:
Calculator model
Write the numbers of the questions you answer in the order attempted in the boxes below:
Question number

Please wait to be told you may begin before turning this page.

This question paper consists of 20 printed pages and 4 blank pages


PV11

Physics

Question 1

A train of mass 10 000 kg travels from a station on a straight, horizontal track. Its velocity as a function of time is sketched in the graph below.

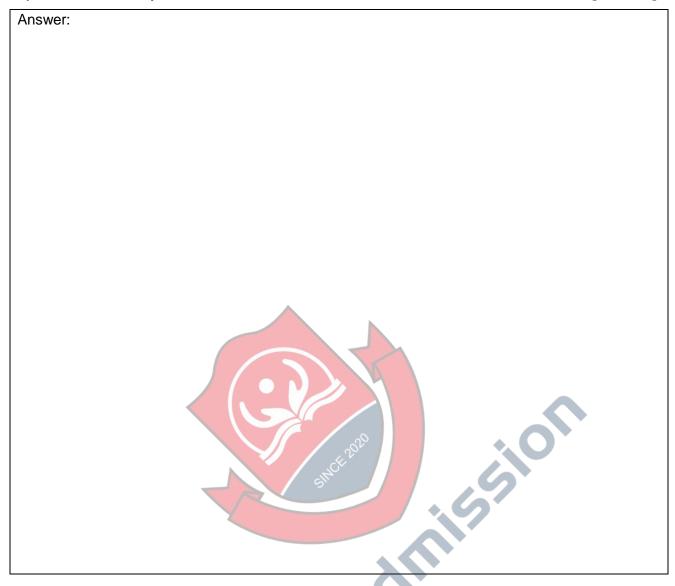
a) Calculate how far from the station the train is after 40 mins.	[4 marks]
Answer:	
b) Find an equation for the velocity of the train between B and C as a function	
Answer:	

C) ((i)	Cal	lcul	late
•	, ,	₩,	Ou	ıou.	aic

$\int_{1300}^{1500} v(t) \mathrm{d}t$	[4 marks]
Answer:	
(ii) What quantity does this number represent?	[2 marks]
Answer:	
d) Calculate the force exerted on the train when $t = 1000$ s. Ho	ow does this force arise? [3 marks]
Answer:	

e) Calculate the mechanical power delivered I	by the train's engine when $t = 90 \text{s}$, neglecting the
effects of air resistance.	[4 marks]
Answer:	
	acceleration of the train as a function of time over the
range $t = 0$ s to $t = 2400$ s.	[4 marks]
	SINCE PORO

Parts (c) and (d) can be attempted even if part (b) is not completed.


A stone of mass m slides on a horizontal frozen lake. There is no friction between the stone and the ice, but air resistance creates a drag force on the stone equal to bv^3 , where v is its horizontal velocity, and b is a constant.

a) Explain why the velocity obeys the equation $ma = -bv^3$, where a is the acceleration. [2 marks]
Answer:
b) The acceleration can be written as the derivative of the velocity with respect to time:
$a = \frac{\mathrm{d}v}{\mathrm{d}t}$
Using this, the equation for the velocity can be written
$m\frac{\mathrm{d}v}{\mathrm{d}t} = -bv^3$
This equation is an example of a differential equation. How the velocity varies with time can be found by solving this equation, which involves evaluating the following (which you do not need to prove)
$\int_{v_0}^{v} \frac{1}{v^3} dv = \int_0^t -\frac{b}{m} dt$
where v_0 is the velocity at time $t = 0$.
(i) Evaluate the definite integral on the left-hand side, and similarly evaluate the definite integral on the right-hand side. [8 marks]
Answer:

(ii) By setting the results of the tw your expression show that	wo integrals to be equivalent $v^2 = \frac{v_0^2 m}{m + 2bv_0^2 t}$	ual to one another and rearranging [4 marks]	
Answer:			
Allswei			
		·····	
	0	····	
	, , , , , , , , , , , , , , , , , , ,		
	GIN .		
		+62	
c) After what length of time will the ston	e's velocity have hal	ved? [5 m	arks]
Answer:			

d) Sketch the velocity and acceleration of the stone as a function of time.

[6 marks]

Chemistry

								nen	IIS	ıy			
He 2 4.003	Ne 10 20.18	Ar 18 39.95	ž	36	83.80	Xe	54	131.3	Rn	98			
	F 9 19.00	Cl 17 35.45	Br	35	79.90	H		126.9	Ą	85			
	O 8 16.00	S 16 32.06	Se	34	78.97	Te	25	127.6	Ъо	84			
	N 7 7 14.01	P 15 30.97	As	33	74.92	Sp	51	121.8	<u></u>	83	209.0		
	C 6 12.01	Si 14 28.09	Ge	32	72.63	Sn	20	118.7	Pb	82	207.2		
	B 5 10.81	Al 13 26.98	Ga	31	69.72	In	49	114.8	≓	81	204.4		
			Zn			PS	48	112.4	Hg	80	200.6		
			no		63.55	Ag	47	107.9	Au	62	197.0		
		-	Z	28	58.69	Pd	46	106.4	Pt	78	195.1		
	nber mass		၀၁	27	58.93	Rh	45	102.9	I	77	7		
	symbol atomic number mean atomic mass		Fe	56	55.85	Ru	44	101.1	SO	92	190.2		
	ator mean		Mn		_	JC	43		Re	75	186.2		
			ပ်	24	52.00	Mo	42	95.95	>		183.8		
			>	23	4	Q Q	41	92.91	Та	73	180.9		
			; ⊏	22	47.87	Zr	40	91.22	士	72	178.5		
			Sc	21	44.96	>	39	88.91	Ľa*	22	138.9	Ac+	88
	Be 4 9.012	Mg 12 24.31	Ca	20	40.08	Sr	38	87.62	Ba	99	137.3	Ra	88
1 1.008	Li 3 6.941	Na 11 22.99	*		39.10	Rb	37	85.47	Cs	22		Ŧ.	87

	ပ္ပ	٦̈	PZ	Pm	Sm	Eu	рg	q L	D	우	Ē	Tm	Υb	Lu
*Lanthanides	28	26	09	61	62		64	65	99		89	69	02	71
5	140.1	140.9	144.2		150.4		157.3	158.9	162.5		167.3	168.9	173.0	175.0
	Т	Ра	n	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	рW	No	Lr
+Actinidae	6	9	95	93	94	92	96		86	66	100	101	102	103
	232.0	231.0	238.0											

a) There are two compounds with the formula C₃H₆. Write out the structures of these more a displayed formula and as a skeletal formula. Give the names of the two compound identify the particular class of compounds each belongs to.	
Answer:	
b) Like every other member in its class, one isomer of C₃H ₆ , isomer A, reacts rapidly wi to form a single product, F. Draw the structure of A as a skeletal formula and also the of the product formed when A reacts with bromine.	th bromine e structure [3 marks]
Answer:	

as a side product.	of compounds o However, B rea a single compo	r B , has a number of nly react with bromine cts with bromine in thound G . F and G are is	e in the presence of e absence of light (b	light and form HBr out much less rapidly
Answer:				
d) The table below gi (as graphite) and h		e standard enthalpies	of combustion, $\Delta_c F_c$	^ρ , of A , B , carbon
	A	В	C(s) (graphite)	$H_2(g)$
$\Delta_{\rm c} H^{\rm o}$ / kJ mol ⁻¹	-2058	-2091	202.5	-241.8
		20010	-393.5	-241.0
		I equation for the com		
	alanced chemica	equation for the com		
(i) Give the ba	alanced chemica	42020		
(i) Give the ba	alanced chemica	equation for the com		
(i) Give the ba	alanced chemica	equation for the com		
(i) Give the ba	alanced chemica	equation for the com		
(i) Give the ba	alanced chemica	equation for the com	plete combustion o	
(i) Give the ba	alanced chemica	equation for the com	plete combustion o	f C ₃ H ₆ . [2 marks]
(i) Give the ba	alanced chemica	halpy of formation, $\Delta_{\rm f}$	plete combustion o	f C ₃ H ₆ . [2 marks]
(i) Give the bath	alanced chemica	halpy of formation, $\Delta_{\rm f}$	plete combustion o	f C ₃ H ₆ . [2 marks]
(i) Give the bath	alanced chemica	halpy of formation, $\Delta_{\rm f}$	plete combustion o	f C ₃ H ₆ . [2 marks]
(i) Give the bath	alanced chemica	halpy of formation, $\Delta_{\rm f}$	plete combustion o	f C ₃ H ₆ . [2 marks]
(i) Give the bath	alanced chemica	halpy of formation, $\Delta_{\rm f}$	plete combustion o	f C ₃ H ₆ . [2 marks]
(i) Give the bath	alanced chemica	halpy of formation, $\Delta_{\rm f}$	plete combustion o	f C ₃ H ₆ . [2 marks]

(iii) Calculate the standard enthalpy of formation of B .	[3 marks]
Answer:	
(iv) Calculate the standard enthalpy change for the reaction ${f B} \to {f A}$. Comm	nent on the value
you obtain.	[2 marks]
Answer:	
) `
e) The standard enthalpy of combustion of C_6H_{12} is $-3920 \mathrm{kJ}\mathrm{mol}^{-1}$. Using this val corresponding value for B , calculate the average contribution $\Delta_c H^o$ per CH_2 gro	ue and the
compounds. Comment on your result.	[4 marks]
Answer:	
Allowel	· · · · · · · · · · · · · · · · · · ·

a) Arsenic oxide As_2O_3 is prepared on an industrial scale by roasting arsenic-containing of as arsenopyrite, FeAsS, in air. The other products formed are iron(III) oxide and sulful and sulful oxide are iron(III) oxide and sulful oxide are iron(III).	
(i) What is the oxidation state of the arsenic in As ₂ O ₃ ?	[1 mark]
Answer:	
(ii) Give a balanced chemical equation for the industrial production of As ₂ O ₃ from	FeAsS. [2 marks]
Answer:	
b) As ₂ O ₃ is moderately soluble in water; one dm³ of a saturated solution at 25 °C contains When dissolved in water, the oxide reacts to form arsenous acid, H ₃ AsO ₃ .	
(i) Given that other measurements show all the hydrogen atoms in H ₃ AsO ₃ to be in same environment, suggest a structure for the acid. What is the geometry arou arsenic atom?	
Answer:	
(ii) Give an equation for the formation of arsenous acid from As ₂ O ₃ when dissolve water.	d in [2 marks]
Answer:	

(iii) Calculate the concentration of the arsenous acid, in moldm ⁻³ , in the saturated solution. [2 marks]
Answer:
c) Homeopathic medicines are made by preparing an extremely dilute solution of some compound, such as As_2O_3 . Typically a saturated solution is diluted by a factor of 10^{30} .
 (i) Assuming that the solution referred to in (b) is diluted by a factor of 10³⁰, calculate the mass (in g) of As₂O₃ present in a 100 cm³ of the diluted solution. [2 marks]
Answer:
 (ii) Given that 0.1 g of As₂O₃ is usually fatal, calculate the volume (in m³) of the diluted solution that would be needed for a fatal dose of As₂O₃. Also express your answer as a fraction of the volume of the Earth (approximately 1.08 × 10¹² km³). [4 marks]
Answer:

()		is usually sold in 'one the solution need to			
Answer:					
•	nydrochloric acid is all ed using the following	so sold as a homeop g equation: pH = -log ₁	h.	ne. The pH of a solu	ition may be
Rearran		ntration of hydrogen in ows us to calculate the			
o p o	and delationin	$[H^+] = 10$	-pH		
(i) V	Vhat is the pH of pure	e water at room temp	eratu <mark>re?</mark> Ca	lculate [H ⁺] for pure	water. [3 marks]
_		, zct			[o mano]
Answer:					
Answer:				.67	
Answer:					
(ii)	Assuming the origina what is the concentr	al stock solution beforation of HCl and pH oby a factor of 10 ² ; 2) of	re dilution habbtained by t	he following dilution	s of the stock
(ii)	Assuming the origina what is the concentrations of 10 ¹⁰ .	al stock solution before	re dilution habbained by tallilution by a	he following dilution	s of the stock ion by a
(ii)	Assuming the origina what is the concentrations of 10 ¹⁰ .	al stock solution beforation of HCl and pH o	re dilution habbained by tallilution by a	he following dilution	s of the stock ion by a
(ii)	Assuming the origina what is the concentrations of 10 ¹⁰ .	al stock solution beforation of HCl and pH o	re dilution habbained by tallilution by a	he following dilution	s of the stock ion by a
(ii)	Assuming the origina what is the concentrations of 10 ¹⁰ .	al stock solution beforation of HCl and pH o	re dilution habbained by tallilution by a	he following dilution	s of the stock ion by a
(ii)	Assuming the origina what is the concentrations of 10 ¹⁰ .	al stock solution beforation of HCl and pH o	re dilution habbained by tallilution by a	he following dilution	s of the stock ion by a
(ii)	Assuming the origina what is the concentrations of 10 ¹⁰ .	al stock solution beforation of HCl and pH o	re dilution habbained by tallilution by a	he following dilution	s of the stock ion by a

Biology

Question 5

Look at the following table.

	320										330										340									
Organism 1	G	С	С	Т	Α	G	G	С	Α	Т	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Α	Т	Т	Α	Т	Α	С
Organism 2	G	С	Т	Α	Α	G	G	С	Α	С	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Т	Т	Α	Α	Т	Α	G
Organism 3	G	С	Т	Α	Α	G	С	Α	С	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Т	Т	Α	Α	Т	Α	G	С
Organism 4	G	С	Т	Α	Α	G	G	С	Α	С	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Α	Т	Т	Α	Т	Α	С
Organism 5	G	С	С	Α	Α	G	G	С	Α	С	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Α	Т	Т	Α	Т	Α	С
Organism 6	G	С	Т	Α	Α	G	G	С	Α	С	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Т	Т	Т	Α	Т	Α	С
Organism 7	G	С	Т	Α	Α	G	Α	G	Α	С	Т	Α	С	G	G	Α	Α	С	G	С	С	G	С	Т	Т	Α	Α	Т	Α	G

a)	What does each horizontal line represent?	[1 mark]
An	swer:	
•••		
b)	If the molecules represented above are transcribed, how would transcripts differ from the original sequences? (Note that you do	
	transcripts.)	[3 marks]
An	swer:	
		Y

c)	Which of the sequences is least likely to lead to a functional part of a protein, and why? [3 marks]
An	swer:
d)	Each organism in the table belongs to a different species. Based on the sequences, state which organisms are (i) the most related to each other, and (ii) the least related to each other. [4 marks]
An	swer:
e)	If organisms 1-6 are all Eukaryotes, which domain(s) of life could organism 7 belong to? [2 marks]
An	swer:

f) Discuss how the differences in these sequences might have arisen, and the possible

evolutionary consequences of this variation.	[12 marks]
Answer:	
······································	
	• • • • • • • • • • • • • • • • • • • •

Look at the image below.

a)	Using experiments, how could you tell if each of these snails belonged to the same species? [2 marks]
	Answer:
b)	These snails do in fact belong to the same species, and each of the colour/stripe forms is maintained at very consistent frequencies in the population across time. When such variation is maintained in the population by natural selection, we call it a stable polymorphism. With reference to natural selection, explain why stable polymorphisms are relatively rare in nature. [3 marks]
	Answer:

c)	'search images', making it easier to find that form in future. Suggest how the variation in	snail
	shells might be maintained in a population.	[2 marks]
	Answer:	
d)	In terms of genetics, the allele for 'unbanded' is dominant to 'banded'. If I breed some he 'unbanded' snails together with homozygous 'banded' snails, what will be the F1 phenot genotypes?	
	Answer:	
e)	If I breed the F1 generation from the previous cross together, and get 240 offspring, what the estimated numbers of each phenotype and genotype in the next generation?	at will be [4 marks]
	Answer:	

f)	Explain how you would conduct a study to compare the proportions of pink, banded sn different habitats. Consider how you would avoid bias in your samples.	ails in two [12 marks]
	Answer:	
		•••••

